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TECHENICAL NOTE 3308

AN EXPLORATORY INVESTIGATION OF SOME TYPES OF AEROELASTIC
INSTABILITY OF OPEN AND CLOSED BODIES OF REVOLUTION
MOUNTED ON SIENDER STRUTSL

By S. A. Clevenson, E. Widmsyer, Jr.,
and Franklin W. Diederich

SUMMARY

Aercelastic instebility phenomena of isoclated open and closed rigid
bodies of revolution free to move under elastic restraint have been
investigated experimentally at low speeds by means of models suspended
at zero angles of attack and yaw on slender flexible struts from s wind-
tunnel ceiling. Three types of lnstability were observed - flutter simi-
lar to classical bending-torsion flutter, divergence, and an uncoupled
oscillatory instability which consists in nonviolent continuous or inter-
mittent small-amplitude oscillations involving only angular deformations.
The speeds at which this oscillatory instability starts were found to be
as low as about one-third of the speed at flutter or divergence and to
depend on the shape of the body, particularly that of the afterbody, and
on the relative location of the elastic axis.

An attempt has been made to calculate the airspeeds and, in the
case of the oscillatory phenomens, the frequencies at which these insta-
bilities occur by using slender-body theory for the aerodynamic forces
on the bodies and neglecting the aerodynamic forces on the struts. How-
ever, the agreement between the speeds and freguencies calculated in this
manner and those actually observed has been found to be generally unsat-
isfactory, with the exception of the frequencies of the uncoupled oscil-
lations which could be predicted with falr accuracy. The nature of the
observed phenomena and of the forces on bodies of revolution suggests
that a significant improvement in the accuracy of analytical predictions
of these seroelastic instabilities can be had only by taking into account
the effects of boundary-layer seperation on the merodynamic forces.

lSupersedes the recently declassified NACA RM L53EO0T7, "An Explora-
tory Investigation of Scme Types of Aeroelastlc Instability of Open and
Closed Bodies of Revolution Mounted on Slender Struts" by S. A. Clevenson,
E. Widmayer, Jr., and Franklin W. Diederich, 1953,
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INTRODUCTION

Flutter, divergence, and similar aerocelestic instability problems of
wings and teil surfaces have been recognized for a long time. On the '
other hand, the related problem of aeroelastic instability of bodies of
revolution (generally hereinafter referred to simply as "bodies") has
become of interest only recently, primsrily because only recently have
externsl stores and fuel tenks in the shape of bodies of revolution been
carried on high-speed airplanes, and orily at high speeds do the aero-
dynemic forces exerted on bodies at low angles of attack become suffi-
ciently large to give rise to aeroelastic problems.

There are several differences in the aeroelastic instability phe-
nomens of wings and of bodies, that 1s, in the nature of the motions, in
the nature of the aerodymemic forces involved, and in the nature of the
resulting phenomensa.

The aeroelastle phencmena of wings essentially involve deformetions
of the wings themselves, whereas those of bodies are very unlikely to
involve significant deformations of the bodles and are based, instead,
on the deformation of the members supporting the body. For instance, a
fuel tank carried on two strute, one behind the other, under a wing, or
a ram jet carried simllarly on supports sbove the fuselage can move later-
ally as a result of the sidewise deflections of both struts in the same
direction, and they can be yawed by a deflection of the front strut to
one gide and of the rear strut to the other. In these two degrees of
freedom, classical flutter may occur under the proper circumstances;
under other circumstences and Involving only the yawing degree of free-
dom, classical divergence may occur.

The aerodynemic forces on wings &t small angles of attack or under-
going oscillations of small amplitude sbout zero angle of attack can
generally be calculated with sufficient accuracy by potential-flow theory;
they are lineer functions of the angle of attack or the amplitude, respec-
tively, and are not influenced in an essential wsy by the boundary layer.
(Exceptions to this statement are the forces cauging such nonclassical
instability phenomensa as stall flutter, aileron buzz, and wing buffeting.)
The aerodynamic forces on bodies of revolution, however, are often essen-
tially determined by the effects of viscous flow. For instance, the 1ift
which is known to exist on bodies at an angle of attack in steady flow is
due entirely to these effects, because potential-flow theory predicts zero
1ift for this case. This lift is often an intrinsically nonlinear function
of the angle of attack. (See ref. 1, for instance.) Consequently, the
aeroelastic instebility phenomena of bodies are more likely to be of a
nonclassical type related to stall flutter and similar phenomena then are
the aeroelastic instability phenomena of wings.
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Two experimental flutter investigations have been made of bodies
mounted on wing tips (refs. 2 and 3), but no aeroelastic-instability
studies appear to have been msde previously of essentially isolated
bodies, that is, bodies mounted at some distance from a lifting surface
on flexible struts which contribute no aerodynemic forces. Some instances
where this problem arises in practice are external stores or tanks car-
ried on struts under the wing and ram jets carried on supports on top of
the fuselage. Also, an analysis of the aeroelastic instebility of an
isolated body mey serve to shed some light on the much more complicated
problem of aeroelastic instebility of a body mounted on a wing tip.

An investigetion has therefore been conducted in order to galn some
insight into the nature of the instebility phenomena of such isolated
bodies of revolution. A streamlined body, an open tube, and several
bodies consisting of the tube wlth veriously shaped end pleces were sus-
pended from the ceilling of a wind tunnel on struts of several stiffnesses.
The closed bodies were intended to simulate external stores or fuel tanks;
the open tube, an unfired ram jet. In one series of tests the tube was
also mounted on two struts covered by a fairing. The nature of the vari-
ous types of aerocelastic instability that occurred under various condi-
tione was observed, as were the airspeeds at which they occurred and the
frequencies of any oscilletions present. All tests were conducted at low
speeds (Mach numbers less than 0.5) and with a range of Reynolds number

(based on body length) from 1.5 X 106 to 7.1 x 106.

In an attempt to eanalyze some of these results, the speed and oscil-
latory frequency at which various types of eserocelastic instebllity may
occur have been calculated by using slender-body theory for the aero-
dynamic forces, with certain additional assumptions in the case of the
open tube. The derivation of these forces 1is presented in the appendix
of this paper, and the calculations are described therein. The calculated
and observed results are ccmpared and discussed.

SYMBOLS

a ratio of distance of elastic axls of supporting strut
system rearward of midpoint of body to one-half length
of body; in case of bodles consisting of tuge with verious

8
end pleces, the midpoint is that of tube, —El -1

£ frequency of oscillatory instability, cps

netural lateral bending frequency of body on struts measured
in still air, cps
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natural frequency of yawing oscillations of body on struts
measured in still air, cps
structural demping coefficient (see, for example, ref. k)
lateral translation at elastic axis, ft

amplitude of lateral-translation oscillation, ft

moment of inertis of body ebout elastic axis of configu-
ration, slug-ft2

effective lateral bending spring constant of supports with
body mounted, 1b/ft

effective yawing spring constant, ft-lb/radian

reduced frequency parameter, Lw/2v

aerodynamic force per unit length along body, lb/ft

length of body (length of tube, in case of bodies con-
sisting of tube with end pieces), ft

eerodynamic moment about elastic axis, £t-1b

megs of body, slugs
aerodynamic (lateral) force, 1b

dynemic pressure (at onset of instebility, unless specified
otherwise), 1b/sq £t

dimensionless dynamic-pressure parameter, 2qu/Kd

redius of body of revolution, ft

dimensionless cross-sectional area of body, ﬂRa/Lz

coordinate along length of body, measured rearward from
nose, ft

dlstance from nose of body to elastic axis of support
system, ft

distance from nose of body to center of gravity of body, £t
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Vb volume of body, cu £t
v speed (at onset of instabillity, unless otherwise speci-
fied), £t/sec
Xy ratio of distance of center of gravity of body rearward
of elastic exis of support system to one-half length of
Sp = 5
body, ——
L/2
o yawing angle, radians
Oy emplitude of yawing oscillations, radians
£ dimensionless coordinate, s/L
P density of test medium, slugs/cu ft
Po density of eir at standard sea-level condition, 0.002378
slugs/cu £t
(o) dimensionless distance from nose of body to elastic axis,
Bl/L
w anguler frequency of oscillatory instability, radians/sec
Wy, natural frequency of yawing oscillations of body on struts

measured in still air, radlans/sec

DESCRIPTION OF TESTS

Apparatus

Wind tunnel.- The tests were conducted in air at variable pressures
in the Lengley %.5-foot flutter research tunnel, which is of the closed-~
(circular) throat single-return type.

Models.- The two basic models, the airfoil-shaped body and the open
tube, are shown in figure 1(a). The airfoil-shaped body of revolution
is that generated by rotating an airfoil about its chord. The ordinates
of the airfoil are twice those of an NACA 65-010 airfoil and are listed
in table 1. The open tube consisted of aluminum sheet 1/16 inch thick
rolled into a cylinder with a diameter of 6 inches. Various end sections
were used in conjunction with the tube to represent closed bodies of
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revolution with & cylindrical center section; these end sections are

shown in figure 1(b). The open tube and the airfoil-shaped body are shown
mounted on their supports in the tunnel in figures 2(a) and 2(b), respec-
tively. (The scales shown in fig. 2 read in inches.)

Strut-support systems.- The models were mounted on one of four sets
of supports which consisted of two smell-diameter steel rods fixed on one
end to a mounting plate, and on the other end to a mounting bar to which
the models were bolted. (See figs. 1(a) and 2.) The struts were designed
to make the lateral-bending frequency of the bodies about one-half or one-
third of the frequency of their yawing oscillestion in still air. The
natural frequency of the forward and rearward oscillations of the bodies
was approximately six times their lateral-bending frequency. The strut
diameters and effective spring constants of the support systems comprised
by these struts are listed in table 2.

The effective spring constants were obtained from the frequencies
fy, and fy measured in still air and the known messes and moments of

inertis by means of the relations
Kp = (2nfp)m
and
2
Ko = (2nfq) Iy

The values of K; and K, obtalned in this way represent spring constants
in the true sense of the word only when X, = 0, because only then are the

yawing and sidewise-bending oscillations uncoupled (and even then only if
the additional apparent mass of the still air is neglected). The values
given in table 2 are averages of the values obtained with different bodies
for x5 =0 (except for the values listed for struts A, for which fre-

quency measurements were made for x5 = 0.10 and 0.1k).

For one series of tests with the open tube, the struts B were covered
with a fairing of sluminum alloy 1/§2 inch thick, which extended about

1 inch shead of the front strut and.l%-inch behind the rear strut and was

attached to the struts along thelr entire lengths but was not attached to
the mounting plste or mounting bar. The airfoll obtained in this manner
was gbout 3/16 inch thick at and between the two struts, hed a rounded

leading edge, and a sharp trailing edge.
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Strain-gage instrumentation.- The only instrumentation, apart from
the usual instrumentation required to measure the tunnel speed and den-
sity, consisted of electrical-resistance straln geges mounted on the
roots of the struts in such a way as to measure strains due to sidewise
deflections of the struts. The output signals of the gages on the front
and the rear struts were emplified separately and fed to two channels of
a multiple recording oscillogreph and also to an oscilloscope for immedi-
ate visual observation.

Tests

General procedure.- The procedure for each test was to increase the
tunnel speed slowly and at the same time the angle of yaw of the model was
adjusted (by yewing the mounting plate by means of & mechanism outside
the tunnel) to give zero 1lift and moment on the body, as indicated by the
strain-gage outputs. When some type of instability occurred, the strain-
gage outputs were recorded, the type of instebility was noted, the tun-
nel conditions were observed, and the test was discontinued, except in
some instances when the instability was not violent and it was desired to
study it further.

The model-strut combinations tested in this menner are listed in
the left half of teble 3; also listed are the model mass, model moment
of inertia, elastic-axis and center-of-gravity locatlion, as well as the
megsured still-air frequencies of each configuration. The tests are
divided into several series for the sake of convenience in referring to
them.

Tests on the streamlined body.- In series I, the streamlined body
was mounted on struts A, the most flexible ones, and the tests were con-
ducted at various air densities. In series II, the same body was mounted
on the somewhat stiffer struts B. Only the nonviolent uncoupled oscil-
latory Instebility occurred even at the highest air. density used in these
tests (substantially sea-level density). The tunnel speed was increased
successively to several values beyond that at which this instability first
occurred, the air density being kept substantially constant at the sea-
level value. Test series II consists of measurements of the frequencies
of the oscillations at these air speeds., The streamlined body was also
mounted on the still stiffer struts C, but no aerocelastic instability of
any kind occurred; consequently, this experiment is not listed in table 3.

Tests on the open tube with miscellaneous end sections.- The open
tube with various end sections was mounted on struts B, C, and D, that
is, on all but the most flexible struts. Series IIT consists of the tests
made with the various confligurations at constant air density. Series IV
consists of tests masde at various densities by using the tube with hemi-
spherical sections at both ends mounted on struts C.




8 NACA TN 3308

Tegts on the open tube on unfaired struts.- Tests mede at various
air densities on the open tube mounted on the most flexible struts com-
prise series V, and tests made at constent air densities on the open tube
with various center-of-gravity positions mounted on the next stiffer
struts comprise series VI. The center of gravity was varied by attaching
narrow bands of lead 1/16 inch thick to the inner surface of the tube, so
that the mass, the moment of inertias, and, hence, the still-air frequencles
were changed as well. The open tube was also mounted on struts D, but no
instability occurred at sny speed up to and inecluding the speed at which
this test was discontinued, namely, 536 feet per second. This test is,
therefore, not listed in table 3. '

Tests on the open tube on falred struts.- The tests which constitute
series VII are those made at constant ailr density on the open tube mounted
on struts B with the fairing attached. The location of the center of
gravity was varied in the same mamnner as In series VI.

RESULTS

Pregentation of Results

The results of the tests are presented in the right half of table 3
and some of these results are presented in filgures 3 to 9.

The speeds listed in table 3 for tests which led to flutter or diver-
gence are those at which these instabilities first occurred. Similarly,
the frequencies listed for the tests which led to flutter are those at
the flutter condition. The air speeds listed for the tests of series IV
are those observed when the instability first occurred, and the frequen-~
cles are those observed at that speed. OSimilarly, in the tests of
series II, the first speed listed 1s that at which the Instability first
occurred, but the other speeds are merely speeds above the first at which
the frequency of the osclllation was measured. The last speed is that at
which the tests of series II were discontinued; the nature of the insta-
bility phenomenon did not appear to change in the speed range covered.

The flutter-speed coefficient 2v/Iw,, the dimensionless dynamic
pressure at flutter g%, and the frequency ratio f/ﬂa pertaining to the
tests of series I are plotted in figure 3 against the density ratio p/po.

The frequencies measured in serles II are shown plotted as a function of
airspeed in figure 4. In figure 5 are shown the speed and dynsmic pres-
sure (both in dimensionless form) at the onset of the yawing oscilllations

observed in the tests of series IV gs functions of the density ratio q/bo.

The flutter-speed coefficients EV/qu and the frequency ratios f/fa

pertaining to the tests of series V are shown plotted as functions of the
density ratic pfp, in figure 6.

=
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In figure T the speed coefficients for which flutter or divergence
occurred are shown plotted against x5 for the tests of series VI. The

points representing the various tests are not connected because the body
mass and moment of inertia (and, hence, the still-air frequencies) were
not constant in these tests. Figure 8 consists of a similar plot made
for the tests of series VII.

Observed Flutter and Divergence Phenomens

Several types of aeroelastic instability were encountered. In the
tests of series I and V, as well as in some of those of series VI and VII,
coupled flutter similer to classical bending-torsion flutter was encoun-
tered, except that "bending" and "torsion" were lateral motion and yawing,
respectively, in the case of these bodies. These two types of motion
were distingulshed by observing the strain-gage outputs. If the outputs
of the front end rear gages had been in phase and of the same magnitude,
the motion would have been from side to side only, without yawing, but
actually this type of motion was not observed in the tests. When the
gage outputs were 180° out of phase and of the same magnitude, the motion
was a pure yawing oscillation, and, when they were out of phase by any
other angle, the motion was a coupled lateral-motion and yawing oscillation.

In one test of series VII a combined flutter and divergence insta-
bility wes observed, not unlike the type of phenomenon which a wing may
experience if 1ts flutter occurs in a mode which involves very little
bending; the tube tended to diverge to the stops after a few oscillations
of increasing amplitude. As in all tests where divergence was observed,
when the body begen to diverge in yaw it moved over laterally as well as
under the action of the side forces brought into play by the yawed attitude.

The flutter frequencies were 111-defined occasionally, particularly
when the body at its flutter condition was also close: to & divergence con-
dition; that is, flutter then occurred so suddenly that no definite fre-
quency could be obtained from the strain-gage record.

Observed Uncoupled Oscillations

An instebility was observed in the tests of series II, III, and IV.
This phenomenon conslsted in continuous or intermititent, self-excited,
small-amplitude yawing oscillations, usuvally with fairly well defined
frequency. When the oscillations were intermittent they started up at
random intervals rather than subsiding and increasing in a regular fashion,
as do oscillations with beats. In two of the tests in which such oscil-
lations occurred the fregquency was insufficiently defined to be measured.
This phenomenon differed from flutter not only in the fact that it involved
small constant amplitudes but also in the fact that, unlike flutter, it
involved no bending deformations of the struts and, hence, no lateral
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motions of the bodies. For lack of a better name this phenomenon is listed
as "yawing oscillations" in teble 3 and will be referred to as such here-
inafter. If the body were mounted in such a way that the struts were hori-
zontal, as would be the case if a body were mounted on the side of & fuse-
lage, this phenomenon would consist of angle-of-attack or piltching
oscillations. i

Some of the tests of series III which resulted in yawing oscillations
were continued to speeds above that at which the oscillations started; the
first speed listed is then the one at which the instability first occurred,
and the second is that at which the tests were discontinued. No change
was noted in the nature of the phenomencn within this range of speeds.

The two frequencies listed for these tests correspond to these two speeds;
the values of p, ¢, and g¥ s&are those which correspond to the first
speed. In the tests of series III in which no instability occurred, and
also in the first test of series VI, the speed listed is that at which the
tests were discontinued.

Resulte of Calculstions

Some of the results of the instability calculations described in the
appendix are also listed in table 3 and are shown in figures U, 6, T,
and 8. TFor series I and II the calculated flutter speed was infinite,
that is, the calculations did not predict flutter for any finite speed.
Nor was it possible to calculate a finite speed at which self-sustained
yawing oscillations could exlst, but the frequencies of the yawing oscil-
lations of the body in & moving airstream could be calculated and are
shown in table 3 and figure L.

Flutter speeds and frequencles were calculated for the tests of
series V; the results are shown in table 3 and figure 6. Flutter speeds
and frequencies as well as divergence speeds were also calculated for the
tests of series VI and VII end are listed in table 3; the speed coeffi-
cients are also shown in figures T and 8.

DISCUSSION

A Note Concerning the Speed and Dynamic-Pressure Parameters

Two dimensionless parameters have been used in order to compare the
results of the various tests. The first of these 1s substantlially the one
commonly used 1n flutter work, the flutter parameter or speed coeffi-

cient v/bay,, where b is the half-chord and is here replaced by one-
half the (basic) body length, so that the parameter becomes EV/Iﬂ%r 1t
involves & measure of the dynamic pressure (in the term v, although the
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air density is not taken into account), as well as of the structural and
inertia properties involved in angular deformations (combined in the
still-air yawing frequency qa). The other parameter used herein is one

often used in static aseroelastic work and msy be referred to as the
divergence parameter or dimensionless dynamic pressure; the form of this

2qV;
parameter used in this paper is gqx = —%;9. It represents the ratio of

the serodynamic moment per unit angular displacement to the elastic
restoring moment per unit displacement and involves implicitly the dynamic
Pressure as well as the structural and aerodynamic properties pertinent
to angular deformation, because the factor 2 is the value of the moment
coefficient (referred to the volume of the body) per unit angular dis-
placement according to thin-body theory. This theory applies only to
closed bodies, but, if it is extended to open bodies on the basis of the
asgsumption that the flow inside the body has the same velocity as that
outside and that the rear end of the body acts like a sharp tralling edge,
the same value is obtained for the moment coefficient because the effects
of these two assumptions cancel each other.

The main advantage of the flutter parsmeter is that it includes some
dynamic or inertia effects; on the other hand, the advantage of the
divergence parameter is that by virtue of its explicit inclusion of sero-
dynamic properties it serves as & more precise definition of certain
instability phenomena. For instance, flutter and divergence can occur
over a wide range of values of the flutter parameter, but, although flut-
ter may occur at almost any velue of the divergence parameter, divergence
should occur at values of this parameter near unity. (If 2 is the correct
value of the moment coefficient per unit angular displacement or if the
correct value is used in the definition of the divergence parameter
instead of 2, divergence will occur when the parameter is 1.) Also, as
shown in the sppendix, the divergence parameter appears to play an impor-
tant part in determining the frequency of the uncoupled yawing oscillations.

Both parameters, therefore, have some advantages and, in view of the
exploratory nature of the investigation, both have been used in attempts
to analyze the observed phenamens.

Flutter and Divergence

Flutter and divergence similar to the classical instaebility phenomensa
on wings were both observed on the aerodynamically clean bodies, the
streamlined body and the open tube with and without fairing on the struts,
as mey have been expected, because under certain conditions these bodies
have linear aerodynamic forces which mey be expected to give rise to
phenomensa similar to the classical instability phenomena of the wings.

The streamlined body.- The streamlined body fluttered in the tests
of series I, in which the density was varied but 8ll other parameters
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held constant, at speeds which corresponded to a wide range of the flutter

parameter EV/LQI but to values of g* which varied only between 0.79

and 0.94%. The flutter frequency was substentially constant in these tests.
(See fig. 3.)

The quantity q* varied relatively little in these tests because
it conteins the air density, which was the only variable in these tests.
The small varistion of q* in the tests can be considered to be due to
the change in' the mass ratio, that is, the ratio of the body mass to the
mass of the dlsplaced air. Inasmuch as the body would have diverged at
g* = 1 1if the actual moment on this body in steady flow were that pre-
dicted by thin-body theory, fIutter occurred in these tests at dynamic
pressures from 6 to 21 percent lower than the theoretical dynamic pres-
sure at divergence.

When attempts were made to calculate the flutter speed of the stream-
lined body, the serodynamic forces predicted by thin-body theory were
found to be incapable of predicting a finlte flutter speed. For bodies
with a fineness ratio of about 5, the moment due to angle of attack and
normel force due to steady rotation predicted by thin-body theory are
about 25 and 40 percent higher, respectively, than those predicted by
exact potential-flow theory. The values predicted by potential-flow
theory are, in turn, somewhat higher than the actual values as the result
of boundary-layer separation. TInasmuch as quantitative errors in the

predicted forces would tend, by themselves, to result only in an incorrect

flutter speed, the fact that the predicted flutter speed does not even
exlst suggests that aerodynamic forces must be involved which sre not
predicted by this theory. Such forces are the normal force due to angle
of attack and the moment due to steady rotation. These forces are zero
according to thin-body and exact potential-flow theory, but actuslly they
do exist; often they vary linearly with angle of attack and rate of rota-
tion, respectively, and thus represent the type of forces required to
cause classical flutter.

In the light of this discussion, prediction of the flutter speed of
bodies of revolution thus requires a knowledge of the effects of the
boundary layer and of the phenomens associated with its separation on
the aerodynamic forces. Hence, the main shortcoming of thin-body theory,

insofar as the prediction of flutter is concerned, consists in the inability

of potential-flow theory in general to predict some of the critical forces
involved in these phenomena rather than in the degree to which thin-body
theory approximates exact potential-flow theory. 1In divergence, however,

only the moment due to angle of attack is involved; therefore, the correct )

magnitude of this force is important. Inasmuch as the moment predicted
by thin-body theory is about 30 or 40 percent higher than the actusl
value, the dynamic pressure at divergence would be that much higher than
that estimated on the basis of thin-body theory; therefore, in the tests
of series I, the highest speed reached.probably corresponds to sbout

80 percent of the true divergence speed.
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The open tube on unfaired struts.- In the tests of series V the open
tube fluttered at all densities. The values of 2v/Ln1 decreased from

10.32 to 5.30 with increasing density, and the values of g* appeared

to increase gradually from 0.516 to 0.579, except for the second test of
the series for which g* was somewhat higher than expected from the
other three tests. (See table 3.) These trends are the same as those
observed in the case of the streamlined body. In contrast to the stream-
lined body, however, flutter speeds could be calculated for the open tube
on the basis of thin-body theory (with the additional assumptions of
unobstructed flow through the tube and of the flow continuing in the same
direction after leaving the tail end of the tube rather than reassuming
the free-stream direction). These speeds are in fairly good agreement
with the measured ones.

The observed frequencies did not vary with the density, a fact which
was also noted in the case of the streamlined body. The calculated fre-
guencies did not vary with density either but were about 30 percent higher
than the observed ones. -

On the basls of these comparisons it appears that the aercdynmamic
forces are taken into account in a qualitatively correct manner, but that
quantitetively they must be improved considerably before they can be used
to predict flutter speeds and frequencies correctly for ducted bodies.

In the tests of series VI, the tube fluttered or diverged in all
cases, except in the first test, in which the speed of the test was not
carried to a high enough value. Flutter occurred when the center of
gravity was at or behind the elastic axis, and divergence, when 1t was
at or in front of the elastic axis (see fig. 7); when it was at the
elastic axis, the tube fluttered at the higher mass and diverged at the
lower mess. - This trend agrees with the trends noted in the tests of
series I and V, because in these tests there appeared to be a tendency
to approach divergence as the air density increased and, hence, the mass
parameter decreased. The values of 2v/an at instability varied from

5.47 to 7.95 and those of q* between 0.459 and 0.754 (see table 3).

The values of ¢q¥* at divergence tended to be higher than those at flut-
ter, as may be expected in view of the nature of q* as, primarily, a
divergence criterion. No such distinction can be made in the case of
the values of 2V/Iﬂb: at instebility, both the highest and lowest values

of which correspond to divergence.

The calculated speeds at instability are in fairly good agreement
with the measured speeds for the resrwerd locations of the center of
gravity, but the flutter speeds predicted for forward center-of-gravity
locations are much too low. The two measured flutter frequencies are
substantially below the values calculated for those two cases. The cal-
culated divergence speeds are consistently higher than the measured ones
by about 20 percent on the average; therefore the moment coefficient per
unit anguler displacement (the only aerodynsmic parameter which enters
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the calculation of the divergence speed) must be about 40 percent higher
than that estimated by means of the modified thin-body theory used herein.
Actuslly the tube under consideration is not sufficiently slender to
Justify the use of thin-body theory, and its sbrupt changes in cross-
section at the nose and tail violate certaln assumptions inherent in
thin-body theory; also, the validity of the two additional assumptions

is doubtful. Hence, the insbility of the modified thin-body theory to
predict quantitatively useful results is not surprising.

A more accurate potentiel-flow solution for the flow through and
about an open tube would be difficult to obtain, and its validity would
still be open to gquestion because the flow inside the tube would be
slgnificantly affected by the boundery layer Iin the inside walls. The
avalilable solution for a ring airfoil is inapplicable to this case
because the tube is far too slender for this theory. The most promlsing
solution, therefore, appears to be the use of & semlempirical method for
estimating the aerodynamic forces required in flutter analysis. Such a
method might consist in retaining thin-body theory but modifying the two
additional assumptions, that is, by estimating the magnitude of the
forces which are, in effect, concentrated at the rear of the afterbody
and the extent to which the flow decelerates inside the tubes on the
basis of measurements of the moment and normel force due to angulsar dis-
placement. In divergence calculations only the moment per unit angular
displacement is required, of course.

The open tube on faired struts.- The aeroelastic instability phenom-
ena of the tube were substantially unchanged by the addition of the
fairing; spparently, the increase in the aerodynamic forces was canceled
in effect by the increase in the stiffness of the configuration. Flutter
still tended to occur at the further rearward position of the center of
gravity, and divergence, at the forward positions. (See table 3 and
fig. 8.) The agreement between the calculated and measured speeds was
poor, the calculated values being much too low, and the calculated fre-
guency corresponding to the one measured frequency was also much too low.
The first two tests of this series serve to illustrate the difficulty of
estimating the speed at which aercelastic-instabllity phenomena occur;
under identical test conditions, the model diverged in one case &t
522 feet per second and exhiblted some symptoms of flutter at 481 feet
per second in the other case, flutter apparently having been suppressed
the first time.

The fact that the calculated values of the divergence speed are
lower than the observed values Indicates that, inasmuch as the aerodynamic
moment on the tube due to anguler displacement was probably underesti-
mated, as in the tests of series VI, the forces on the falring were
greatly overestimated, as might be expected to be the case because unmodi-
fied two-dimensionel theory was used to estimate these forces. The exact
calculation of the mutual interference effects of the tube and the wing
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tip represented by the fairing represents & very difficult problem for
which no solution has been found to date. For the time being, therefore,
approximations similar to those made herein must be used, aslthough they
could probebly be improved by resorting to empliricisms based on some
measured results.

Yawing Oscillations

The streamlined body; speed at which oscillations start.- When in
the tests of series IT the streamlined body was tested on stiffer struts
and with an elastic-axis location 5 percent of the body length further
forward than In the tests of series 1, no flutter was observed; instead,
the body experienced the self-excited yawing oscillations described pre-
viously. These oscillations started at a speed which is reletively low
compared to those &t which flutter occurred in the tests of series TI;

it corresponds to %i— = 3.76 and gq¥ = 0.211, and the speed at which

[0 4
the tests were discontinued corresponds to 2v_ =6.70 and g* = 0.630,

whereas at the same density flutter would have occurred In the tests of
series I at values of EV/Ia)a and q* of sbout 8.0 and 0.9, respec-

tively. Therefore, 1f the tests of series II had been continued to a
speed some 15 or 20 percent higher than that at which they were discon-
tinued, flutter would probably have occurred if the values of 2v/Lw
and q¥* at flutter are assumed not to differ much between the two test
series. The fact that oscillations occurred In the tests of series II
but not in those of series I is probably the result of the difference in
elastic-axis locatlons, as will be shown later.

In order to calculate the speed at which yawing oscilllations might
start, an attempt was made to solve the equations of motion for the case
of zero lateral displacement. For this case there are two differential
equations with one unknown function. With the aerodynamic forces given
by thin-body theory, however, the equations can have a solution only when
the airspeed is zero. Therefore, the nature of the air forces must again
be different from that assumed to yield equations which are compatible
at nonzero airspeed.

From & physical point of view, self-excited oscillations can occur
only if the net damping is zero. In the equation for the equilibrium
of the moments as set up in the appendix, there is no damping term,
because the serodynemic damping moment according to thin-body theory is
zero and the structural damping wes assumed to be zero. If, however,
the aerodynamlc moment were actually small and negative, at a certain
speed it would be Just large enough to counteract the structural damping,
and self-excited oscillations would start at this speed. At higher
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gpeeds, the net damping would be negative, but nonlinearities in the By
aerodynemic forces might prevent the oscillations from diverging. Inas-
much a8 these serodynamic forces would then be due entirely to deviation
from potential flow, they would probably very with Reynolds number so
that the question whether and when a body might experience self-excilted
oscillations probably depends on the Reynolds number involved, as well
as on the structural damping.

The streamlined body; freguency of oscillatlions.- Although the equa-
tions set up for the analysis of the yawing oscillations do not furnish
a solution for the speed at the onset of the oscillations they do give
an indication of the frequency of the resulting osclllations, that is,
of the "natural"” frequency in moving air. This frequency is expressible
as a product of the still-air yawing frequency, which involves the dynamic
characteristics of the system, and a correction factor which, except for
a generally negligible dependence on the msss ratio, 1s a function only
of the static aeroelastic characteristics represented in the param-

eter ¢¥, namely V1 - g¥. That the trend of the calculated frequencies
agrees well with the trend of the frequencies measured for the stream-
lined body may be seen from figure 4. However, the rate of decrease
with speed 1s less than predicted. This fact suggests that, inasmuch

as the expression for the. frequency is obtained directly from the equa-
tion representing the equilibrium of the moments on the body, the esti-
meted aserodynemic moments on the streamlined body are too large, which
is true, as previously noted.

Migcellaneous bluff bodies; effect of elastic-axis location on the
speed a8t which osclllations start.- Yawing oscilletions occurred in the
maejority of the tests of series III. The speeds at which they started
correspond to values of 2v/Lq3 and gq* much lower than those at which

the streamlined body fluttered in the tests of series I and of about the
same magnitude as those at which the osclllations of the streamlined body
started in series II. (See table 3.) Some of the tests of series III,
for instance, the last-listed one, resulted in no instability at what
appear to be falrly lsrge values of EW/L@J and q*; however, all values

of 2v/an listed in table 3 are based on the length of the basic tube.

If they had been based on the actual lengths of the various bodies,

2v/lau would have been about 4 for the last-listed test, which value is
about the same as that at which the oscillations of the streamlined body
began (3.76) and much lower than that at which that body could have flut-
tered at this density (sbout 8). Also, although the value of g* (0.760)
at which this test was discontinued is high compared with that at which
the oscillations of the streemlined body started (0.211), it is lower

than that at which thet body would probably have fluttered at this density
(about 0.9). The values of g* in table 3 for series III are based on
the actual volume, ag are those for the other seriles.
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The speeds at which oscillations started, in the form of the parame-
ter EV/qu, are shown plotted in figure 9(a) as functions of the dimen-

sionless elastic-axis location a. The importance of the elastic-axis
locetion in determining the speed at which the oscillations start may be
deduced from the equation set up in the appendix for the equilibrium of
moments in the yawing-oscillations phenomenon, which contains the dimen-
sionless elastic-axis location o.

In figure 9(a) the upward-pointing arrows on several sketches refer
to cases in which no instability was observed; therefore, any instability
would have had to occur at values of EV[HQI greater than those shown,

which represent those at which these tests were discontinued. Figure 9(a)
also contains one point representing the conditions at which the stream-
lined body started to oscillate in the tests of series II. The sketches
in figure 9(a) all imply an airstream approaching from the left.

The only body for which sufficient information was avaeilable to
deduce the effect of elastic-axis location on the speed at which the
oscillations started is the one with hemispherical nose and tail. In
figure 9(a) this body is represented by four points which appear to lie
on & smooth curve which has & minimum at &a = 0. For the body with hemi-
spherical nose and streamlined tail, two points were available. These
points are connected by a curve based on the pattern exhibited by the
body with hemispherical nose and tail which represents the probable
variation of the speed coefficient with elastic-axis location, although
the minimum of the curve may not be at a = 0 as shown. For each of
three other bodies (including the body used in the tests of series I
and II), one point was available which represented the onset of oscilla-
tions and one point-which indicated only that the oscillations, 1f any,
would have to start at higher speeds except that, for the steamlined
body, the second point represented the flutter condition. Curves repre-
senting the estimated variation of speed at the onset of osclllations
with elastic-sxis location are shown for two of these bodies as well.
These approximate curves indicate that the speed at which oscillations
start is lowest when the elastic axls 1s near the midpoint of the body.

By using the estimated variations as a8 gulde, that is, by estimating
what the speed would have been if the elastic-axis-location parameter &
had been zero, the effect of the body shape on the speed at which oscil-
lations tend to start can be divorced from that of the elastic-axis loca-
tion.

Miscellaneous bluff bodies; effect of body shape on the speed at
which oscillations start.- Inasmuch as a part of the large differences
in the speed coefficients shown in figure 9(a) for the various bodies is
due to the fact that the coefficients were based on the length of the
basic tube, the speed coefficient will be considered to be based on the
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actual length of the body in the following discussion. The various
bodies then fall into several mein classes. Oscilletions appear to start
at the lowest speeds when the tail of the body is hemispherical, regard-
less of whether the nose is Hemispherical, square (cover plate), or =
small cone (for all of which '2V/LQ1 is about 1.3}, or a streamlined

body (for which 2v/an is about 1.5). The cless with the next highest

range of speeds at which oscillations start is that with talls consisting
of the streamlined shape or the large cone. If for this group the nose
is hemispherical or square, Ev/qu is ebout 2.5; if the entire body is

streamlined, 2v/1qz is about 3; and 1f the nose of the body 1s a pointed
streamlined shape or a large cone, EV/LQI is greater than 4. The class

for which oscillations stert at the highest speeds 1s, surprisingly, that
with a square tail (cover plate); if for this group the nose i1s hemlspheri-
cal or square, QT/L%J is about 3 to 4, and, if the nose is a pointed

gtreamlined shape, 2v/Iw., 1is greater than 4. All these numericsl values
’ (0

must be used with caution, of course.

In general, then, the speed at which oscillations start appears to
depend to a large extent on the shape of the tail of the body, a hemi-
spherical tail being the least favorable in that it oscillates at the
lowest speeds, & streamlined tail or large cone used as a tail being much
better, and a square tall being most favorable in this respect. The
gshape of the nose has almost no effect when the tail is hemispherieal but
has some effect in the other cases, & squere or hemigpherical nose being
worst, a conventionally streamlined (rounded) nose being better, and s
pointed streamlined nose, best. The aserodynamically clesnest configura-
tion, the streamlined body, occupiles a relatively favorable place; the
speed at which it mey stert oscillating can be increased further by
replacing the rounded streamliined nose by a pointed one.

The only way in which the numerical values given for EW/L%a in the

preceding discussion can be related to those corresponding to the classi-
cal instability phenomena is by noting that the streamlined body fluttered
at values of EV/L%J of gbout 8. As & rule of thumb, then, based on these

very limited data, an aerodynamically clean body may be expected to start
oscillating at speeds as low as about one-third its flutter or divergence
speed. To attempt a similar correlation for bluff bodies would be futile,
because these bodies do not experience the linear aerodynamic forces on
which the classical instability phenomens are premised.

The reasons for the relative behavior of the various bodles are as
yet somewhat obscure. The effects of the nose on the speed at which
oscillations start are probably associlated with separation at the nose,
because the less disturbance caused by the nose, the more favorable the
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configuration. Similarly, the behavior of the tail cen probably be
explained by the effects of separation at or ahead of the tail. The
unfavorable effects of the hemispherical tail, for instance, are probably
the results of the rather large projected ares of the teil (projected on
a plane through the axis of the body), which is exposed to the separated
flow. The relatively favorable sgquare tail, on the other hand, has no
projected area exposed to this flow. The streamlined taill probably
causes relatively little separation and thus is relatively favorable if
the nose is favorably shaped; this effect corresponds to the observed

effects.

In view of the complicated nature of these phenomens there appears
to be little hope of arriving at theoretical methods of predicting the
speed at which the oscillations start, at least in the case of bluff
bodies which are unlikely to be exposed to high-speed airstreams anyway;
in the case of more or less streamlined bodles, empirical approaches may
prove fruitful. In either case the oscillations do not appear to be vio-
lent, and, if they are undesirable, they can always be eliminated by
stiffening the supports and in many cases merely by changing the body
shape or the elastic-axis location, and possibly alsc by using vanes
mounted on the body.

Miscellaneous bluff bodies; frequency of oscillations.~ The ratio
of the frequency of the oscillations to those in still air is shown
plotted in figure 9(b) as a Ffunctlon of the dimensionless dynamic pres-
sure q* corresponding to the speed at which the oscillations started.
The arrows in figure 9(b) refer to cases in which no frequency was meas-
ured and serve merely to call sttention to the fact that oscillations
did start on the given model at the indicated velue of ag¥. As in fig-
ure 9(a), one point in figure 9(b) represents the conditions at which
the streamlined body started to oscillate in the tests of series II.
AMlgo, as in figure 9(a), the sketches in figure 9(b) imply an airstream
approaching from the left.

The frequencies shown in figure 9(b) agree fairly well with the theo-
retical curve (which neglects the effect of the mass ratio). In view of
the fact that many of the assumptions made in the analysis are violated
by the bluff bodies, this agreement is better than may have been expected.
A1l points in figure 9(b) pertain to tests at densities close to ses
level. The results of the tests of series IV at various densities follow
a similar pattern, although the range of g* covered by these tests is
small. (See fig. 5.) The frequency of the oscillations can thus be

estimated on the basis of the relation %L = Jl - g* with fairly good
(04

accuracy. If the body is aerodynamically clean and the speed relatively
high, the accuracy of this formula can be lmproved by replecing the fac-
tor of 2 in the definition of g*¥ by a better value of the moment coef-
ficient per unit angular displacement. At low speeds, the frequency may
be expected to be substantially the same as the still-air frequency.



20 NACA TN 3308
CONCLUSIONS

1. Streamlined bodies and open tubes mounted on thin flexible struts
which do not contribute any aerodynamic forces have been found to diverge
and flutter; flutter tended to occur for relatively far rearward locations
of the center of gravity and for relatively high mass ratios (body mass to
mass of displaced fluid).

2. Flutter could not be predicted for the streamlined body by using
aerodyrnamic forces based .on potential theory. For the open tube, the
calculated flutter and divergence speeds did not agree well with the
measured values; the discrepancies are believed to be due to the intrinsic
shortcomings of potentlal-flow theory. The analysis of unsteady aero-
elastic effects of bodles of revolution therefore appears to require a
knowledge of the boundary-layer and separation effects on the unsteady
forces on these bodies.

5. Closed strut-mounted bodies of revolution appear to be subject
to a nonclassical instabllity which consists in self-excited nonviolent
oscillations which appear to start, in the case of aerodynamically clean
bodies at least, at speeds about one-third that at flutiter or divergence
for the given body.

k. The speed at which the oscillations start for a glven body depends
on the elastic-axis locatiorn, being lowest when the elastic axis is
located near the midpolnt of the body. This speed is also determined to
& large extent by the shape of the body, partlcularly of the tail end.
For bodies with hemispherical tails, the oscillations start at low speeds
but, for bodies with streamlined and, particularly, with squarely cut off
tailsg, they start at relatively high speeds; the optimum nose shape appears
to be a pointed streamlined shape and the next best, a conventional stream-
lined nose shape.

5. The mechanism which causes these oscillations is as yet unknown,
although negative serodynemic damping moments appear to be reguired. The
speed at which the oscillations start camnot, therefore, be predicted at
present; its calculation epparently requires a knowledge of boundary-
layer and separation effects on the unsteady aerodynamic forces. The
frequency, however, can be estimated from a simple formula involving the
frequency of the oscillations in still air and the ratio of the glven
dynamic pressure to that at divergence.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronsutics,
Lengley Field, Va., May 12, 1953.
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APPENDIX

CALCULATION OF AEROELASTIC INSTABILITIES

Equations of Motion

The equations of motion of a rigid body mounted on flexible supports
ard performing combined yawing and lateral osclllations are

-Ia&-m(se-sl)ﬁ-(l+ig)Kaa+Ma=O (1)
-m(sp - él) -mh - (1+ ig)Kyph + P =0 (2)

where the dots designate differentiation with respect to time, and where
P 1s the aerodynamic force and M, the aerodynamic moment (positive in

the direction of positive h and «, respectively). The manner in which
P and Ma were calculated for the bodies considered in this paper is

described in the following sections.

Aerodynamic Forces on Closed Bodies

The aerodynamic forces on closed bodies of revolution performing
unsteady motions in supersonic flow have been calculated by linearized
potential-flow theory (see refs. 5 and 6). The aerodynamic forces on
bodies of revolution in steady incompressible flow can essily be calcu-
lated by potentiml-flow theory (by using sources and sinks, for instance,
as in ref. T); according to this theory, the normal force is zero. The
exact calculation of the aerodynamic force and moment for unsteady motion
by potential-flow theory, however, is guite difficult both at subsonic
and supersonic speeds, and in view of the fact that they are known to be
influenced to & large extent by the effects of viscosity, a large expendi-
ture of effort in calculating them is hardly warranted. In the absence
of any means of teking the effects of viscosity into account for unsteady
motions, a simple approximstion to potential-flow theory, namely slender-
body theory, has therefore been used for the purpose of the calculstions
described herein. (See ref. 8, for instance, for an outline of a slender-
body theory in quasi-steady flow.)

The assumption made in slender-body theory is that the momentum of
the flow in & plane perpendiculer to the free stream 1s the same as it
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would be if this flow were two-dimensional. This assumption implies
that the derivative of the radius with respect to distance along the
length of the body is small (which implies s In turn, that the body is
very slender, that is, the body has & high fineness ratio), and, also,
that the angle of attack and any motions are small. (For a fuller dis-
cussion of these assumptions from the mathematical point of view, see
ref. 9.)

The momentum of the flow ebout a circular cylinder for & unit length
along the cylinder is equal to the product of the rate of motion of the
cylinder and the apparent mass, which is equal to the mass of air dis-
placed by & unit length of the cylinder, or pxR2. At any section of a
body of revolution the rate of motion relative to the component of the
free-stream velocity normel to the axis of the body is va + h + (s - 87)Q;
this value is within the approximations implied in slender-body theory.
Therefore, the momentum per unit length along_the body of the flow per-

pendicular to the body at this section is pnR2(s) [va +h + (s - sl) 6.'].

The force exerted by the body on the fluid per unit length along the
body is equal to the time rate of change of the momentum per unit length,
the rate of change being that along the path of a particle, that is,

%. But within the approximation implied in slender-body theory,

D .9 4, o
Dt -5t “ox

Therefore, the force per unit length along the body is

- <§_t R vs-a;) on2(s) v+ & + (s - 5y)q] 3)

Q
|
Q
o

o (%)

h=he | (5)
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then
1= -p<i¢u + v -a-a;) :rRz(s) [va + iah, + icn(s - sl)aoﬂ 1900

- -pifetami®(s) - B (s - 5 )xRP(s) + v2 & xE2(s) +
Os

ivw(s - sl)gas- nRe(s)]ao + [—(DZRE(S):W + iva)-:—s- nRE(s)]ho o100t (6)

The aerodynemic force P (positive in the same direction as h)
and moment M, (positive in the same direction as o) are then

L

P =L 1 ds
= -pVy {[iwv + a)z(sl - E)]cxo - a)aho} eiwt (1)

and
L
My =J; (s - 8)1 ds
=PV, [v2 + wz(ge - 2848 + 512)}10 +
l%:e(§ - Sl) + iva{lho eiwt (8)
where

5 =-i-j\L s:tRa(s) ds
Vb Jo
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and

or, in dimensionless form,

NZTPeiE = -[21]{[0 + W2 (01, - Il)]ao - 2?1, % (9)
and
M, -
= Iy + 413(0210 - 201, + 12)](10 +
pv-l/e L
Fiho + 25 (1 - cIoﬂa%o (10)

1 1 - 1 5
where I = S(e) at; I, = gs(e) at; and = £°s(E) at,
0 1 Jo 0

For the airfoil-shaped body of revolution, these three values are
I = 0.01626, I = 0.006T4, and I, = 0.00335.

For steady flow (o = O) equations (7) and (8) give the known results
of slender-body theory:

P=0 (11)
M, = PVEVQ | (12)
Aerodynemic Forces on Open Bodiles
In attempting to calculate the forces on the open tube in a similar

manner, several problems srise. If the recovery factor is assumed to be
100 percent, that is, if the velocity of the flow in the tube is assumed
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to be equal in msgnitude to the free-stream velocity, the combined appar-
ent mass of both the internal and the external flow at a given section

of the body is Just twice the apparent mass of the external flow used
heretofore. However, one of the assumptions of slender-body theory,
namely, the one concerning continuity of the radius along the length of
the body, is violated at the nose and tail section of the tube. Conse-
quently, as a result of the abrupt changes in cross-sectional area, not
only the concentrated forces predicted by slender-body theory at the mose
and tail section but also the distributed forces predicted on the remsin-
der of the tube are open to question.

For lack of a better theory a modified slender-body theory has been
used to calculate aerodynamic forces on the open tube. The modification
consisted in disregarding the concentrated forces on the tail section on
the premise that both the externsl and the internal flows leave the
trailing edge of the tube tangentially and are not realined with the free
stream. This assumption is equivalent to the Kutta condition of subsonic
airfoll theory and is used also in the application of slender-body approxi-
mation to airfoil theory. (See ref. 10.) The assumption is thus, essen-
tially, that the exit section of the tube acts like the tralling edge of a
wing of very low aspect ratio.

With these approximations equations (6), (9), (10), (11), and (12)
become, in the case of an open cylindrical tube,

1 = -2pn:R2 [Eiwv - wa(s - sl-) + (va - ivwsl) 8(5)]050 +

|:-a>2 + ivaab(si[ by eiwt (13)

where 5(s) is the delta function which represents the concentrated
loads, and

-;2—1;—% = -2x -l;—’z Eik(l - g)- Lkz(-;- - cr) + 1]0:0 +

(- oK% + ik) —222 (1%)
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M
— g - & [211:(1- ?) - o-hk2<l- o+ 02> o+
pv2Llelot 12
oh
-2k2<%;- o) - iko _Zg (15)
P,_o = -2prRoVQ (16)
M%:O = EpﬂRaslvza (17)

Calculation of Flutter Speeds and Frequencles

For the streamlined body, the force and moment coefficients glven
by equations (9) and (10) were introduced into equations (1) and (2)
with o and h given by equations (4) and (5), and an attempt was made
to solve these equations by the conventional methods of two-degree-of-
freedom flutter anslysis. (See ref. 4, for instance.) However, no
solution was found to exist; therefore, if the aerodynamic forces were
correct, the body would not experience flutter at any finite speed. For
the open tube the force and moment coefficients given by equations (1)
and (15) were substituted into equations (1) and (2). In this case
flutter speeds and frequencies did exist and the computed values are
given in teble 3 and are shown in figures 6 to 8.

For the tube .on the faired struts the forces and moments given by
equations (14) and (15) were used for the tube proper. For the fairing
the force and moment were assumed to be glven by two-dimensional theory
at any section and were obtained from reference 4. The aerodynamic inter-
action between tube and fairing was thus neglected, as was the effect of
the finite span on the forces experienced by the fairing. A Rayleigh-Ritz
type of analysis was used with two modes, a linear torsion and a parabolic
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bending mode. These modes were selected on the basis of the consider-
atlion that the struts deflect somewhat as shown Iln the two following

schematic front views:

LLLLLEL LS LSS

front strut rear strut

struts and

fairing fairing

lateral displacement Yawing

The flutter speeds and frequencles calculated in this manner are given
in table 3 and are also shown in figure 8.

Calculation of the Frequency of the Uncoupled Yawing Oscillations

In order to determine what characteristics, if any, of the yawing-
oscillation type of instability could be predicted, cognizence was taken
of the fact that these osecillations did not involve any bending deflec-
tions; hence, h was set equal to zero in equations (1), (2), (9),
and (10) and, for the sake of convenience, the structural damping coef-
ficient was assumed to be zero as well. The followling equations resulted:

wEIa - K, + pngBE[o + ll-ke(ozlo - 201, + 12):{ a, =0 (18)
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and
2
o m(52 - sl) - pveLz[E:Lho + hka(cIo - Il)] a =0 (19)
A solution of equation (18) can be written as
LoD
Ko
f=f (20)

1+.;-aL-5- (0210 -.zaxl + 12)

This solution furnishes no information concerning a speed at which the
oscillations may stert but, instead, gives the frequency at which the
body will tend to oscillate if it is yawed awey from its equilibrium
position and then released. This frequency is also the dominant fre-

quency of the response of the body to random excitation. The term

2

of the moment of inertia of air at free-stream density contained within
the body to the moment of inertia of the body alone, both taken about the
elsstic axis. This term is inversely proportional to the mass ratio; it
depends on the shape of the body to some extent but 1s substantially
independent of the elastic-axis location. Except at extremely low mass
ratios, this term is negligibly small; for the airfoil-shaped body for
instance, it is 0.0020.§- and 0.0019 éL for the elaptic-axis location
o o
used in the tests of series I and II, respectively.

7
E“(FEIO - 2611 + I ) in the denominator of the expresslon is the ratio

The numerstor of the expression under the radical in equetion (20)
is equal to 1 - g¥*, where q* 1is defined by

2qu
q* = —— (21)

Ka
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Therefore, if the small term in the denominator is neglected, equa-
tion (20) can be written as

% -\I-@ (22)

In order to determine the speed at which these oscillations should
occur equation (18) must be solved simultaneously with equation (19).
However, the only real solution of equation (19) is v = O and, in
221 (UIO - Il). Therefore, if the aerodynamic forces
given by equations (9) and (10) were correct, oscillatioms could occur
only at zero airspeed. These oscillations would then be the ordinary
still-air yawing oscillations, the cordition on Xy being that necessary

to uncouple the yawing from the sidewise-bending mode.

eddition, x, =

Calculation of Divergence Speed

Tnasmuch as divergence is a static instability phenomenon, the speed
required to diverge the body can be found by setting h, o, and ¢
equal to zero in equations (1) and (10) or, more simply, setting o = O
in equation (18). Thus,

K
Vas = (24
divergence
& oIoT

=\ -2 (23)

or

= —g_ -
9divergence 2v, (2k)

The parameter g% defined in equation (21) is thus equal to the ratio
of g to %iivergence? the dynamic pressure at divergence being that

calculated by using slender-body theory.
The divergence speeds for the tests of series VI and VII are given

in table 3 and are shown in figures T and 8. For series I and II the
velue of Qgivergence Mey be obtained from equation (24), and for any
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other test 1t can be obtained from the values of g* and q given in
table 3. Therefore,

1.97Ka for series I and II
29.4 for series I
hop for series IT

:L, in general
*

Q3 ivergence
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TABLE 1.- ORDINATES USED TO GENERATE

THE AIRFOIL-SHAPED BODY

s/L R/L
0.005 0.0154
.oggs .g;g?
.0125 .
025 L0315
.05 .Oh35
10 %05
i .
.15 L0732
.20 .0829
25 .0901
.30 0954
35 .0985
.io .0999
45 .0993
.50 .0960
.55 .0906
.60 .0829
.65 L0736
.70 L0631
.75 .0516
.80 .0397
.85 0277
.90 L0162
.95 .0061
1.00 0
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TABLE 2.- DIAMETERS AND EFFECTIVE SPRING
CONSTANTS OF STRUTS
Strut diameter
Strut in. ’ Kp Ka
A 0.040 10 20
B .100 50 250
c .166 110 430
D 251 200 820
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TARIXZ 3.- RESULTE OF AEAGELASTIC-IRSTABILITY TESTS - Concluded

Body prray = X ! = £ £ Type af oas3l e L ] £ £ - {'?—I"\ (?'-!-\
Fose  Tail | Sirub = = &) G h| & inptability P X 10| Cexp | “apal | Sexp | Cexp | “AmA. | NUSjge, | VR, 0y
Tast series IV
] 0.23 20.6 | 10.5 5.% .....
a2 20.7 | 10.7 L5 [R—
Rl 16,6 | 10.5 2.80 | -
.80 15.1 | 10.7 2.3 | -
99 4.5 | 104 2.05 | cm——
1.19 5.2 10.7 1.92 | -
—— ¢ {oaxmBio.azo|o|o h.28 110.6 | Yawing oscillations 1758 17.7 | 1007 1es |
1.57 20,6 | 10.7 1.04% | amem
1.77 20.5 |10.6 [ -—--- 1.8 | -
1.96 2bk [10.6 || 190 | -
2,15 2.6 {106 | —-—- 1.7% —_——
2.3 19.2 |10.h [ —=e-- 158 | —-—e-
Tast sories ¥
0.5%5 }_? ko | 100 J..gi. 1.59 10.33 7.h2
- 1.12 71 108 | 12,31 2. 2.00 7. 550
- A 0.1810( 0,086k | 0 0.0% | 1.57 | 2.00 Fluttar 1.5 117 BB 10.6] 1.58 | 1.96 £.10 %.68
2% | w0| 71 | 11.8| 1.6 1.99 5.30 3,76
Tept serles VI
0.1237} 0.068L| 0| O %92 | 10.1 Mope 2.3, | 35| --e 120 | emeum | ————— 2.04 ——
JAh10) .0B75{ 0| .08|3.00| 8.k Flutter 2,34 | 3771{%296 | 152 (a) | 6.8 5.TL b.48
Amo] .oreBlalo |3aa] 9.2 Divergonoe 2.4 | %06]%82 | 168 | -een-m dry LR 6.7
ko] .oos7| o] 1k]3.07] 8.2 Flutter 2,14 | 369 | %304 | 156 5.50| 6.7 5.7 k.2
— B JA%80| .1ei7|o| .26(3.00| T.% Flubter 2.1k | 3| °%3 | 133 {a) 6.1 6.06 9,56
amo| .| o) 36| eBr] 7.0 Fluttar 2.1% | 331 |c°3mL | 117 kBO| 5.6 6.00 ﬁ.g
An80| eyl ofo 5,.00| 7.3 Flutter 2.k | 389|276 | 162 {a) 59'3 6.78 k.
A0 JAT3[ O] -0k 2,83] 6.8 Divergence 2.0 | 425 c‘i.z{ i52 ~——— ] 56.6 7.55 $.13
.as80| am7lo|-.26|e96] 7.5 Divergance 2% | 3m)e 150 | meene %3.0 6.37 8.28
Tant gardias VIL
0.1%0| 0.0708 |00 540 | 15.7 Dive 2.4 ﬁ =: R -1 - N [—— S .86 2.64
Jao| omBlolo 5.1 | 13.7 |Flutter and divergemoe | 2.1k £l S F-1'T: N a5, 7 | ) 8.25
—_— a Aklo| o875 | of. .08 (5.50|13.0 Flutter 2.1k | 386 (3 |a%3 (o) | 3.9 h.51 1.11
— Bl sl am7lollislzie i1 Divergenca g1k | deylfeol |15 |- 4.3 L.30 3.26
A7s0| k75| of -k ta297| 8.1 Diverganes 2.1k | 3 frgg [T R p— a3 6.16 L.as
Amo| k5| o] .36 |2.87 ] 8.1 Flutter 2.2 | 32| Y61 | 118 k30| 2.0 5.20 .96

Mot obtained.
CCalculated flutter speed; the calculmted dlverssnce specd is A7,
%alcnminted fluttar frequency.

te covered with fairing siowlating thla airfodl.
Lomioulntad finttan spasd; the saleninted A vargsnce spsed i 20k,
Efnped on caloulsted flutber spesd,

goge NI VOVN

é

ac




T PSS ™ dr e
unnel wall strd't_.guqe s I ,7_1__

-L- — 1 struts—"] I".25"1
l ——————,26"—————— 00052'-:—
I'inl bor Cover plate saction

gi
|
i

Streamiined toll section

I
B—
| ka4

(a) Airfoil-shaped body, basic (b) Bodies of revolution used as nose
open tube, and supports. and tail sections for the basic
tube.

Figure 1.- Dimensions of the verious bodies and the support system.
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(b) Airfoil-shaped body.

Figure 2.- Models mounted in the Langley L4.5-foot flutter research tunnel.
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Figure 4.- Plot of frequency of yawing oscillations agalnst airspeed for
the airfoil-shaped body. (Table 3, test series II.)
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Figure 8.~ Plot of speed coefficients at flutter and divergence against
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charts. (Table 3, test series VII.)
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